Posts from July 2018

As medicinal chemists strive to fill the pipeline with the best possible novel compounds, they require efficient access to the ever-expanding mass of existing information and knowledge about compounds, targets, and diseases and how they are related. Much of this information is buried in published journal articles, patents, reports, and internal document repositories. Posing chemical compound-, target-, and disease-centered questions to extract and organize the data in order to explore these relationships is laborious, time consuming, and potentially error prone. Locating chemical structural information is especially challenging, when chemicals in the literature are described by many different names: technical, trivial, proprietary, nonproprietary, generic, or trade names.

Roche pRED decided to address this problem and equip their medicinal chemists with a chemically-aware text mining tool (Artemis) that would remove the need for manual searches and data-wrangling, and present the data in a user- and analytics-friendly environment for further exploration. Daniel Stoffler and Raul Rodriguez-Esteban, Roche, presented this work in their talk "ARTEMIS - A Text Mining Tool for Chemists" at Linguamatics Spring Text Mining Conference in 2017.


Linguamatics is pleased to congratulate US healthcare system Mercy on their recent award win at the 12th Gateway to Innovation conference. Mercy won the Innovative IT Project of the Year Award for using Linguamatics I2E Natural Language Processing (NLP) solution to extract clinical analytics insights from their Electronic Health Records (EHR) notes for cardiac patients.

Mercy Technical Services provides contract research services for medical device and pharmaceutical clients to support use of real world evidence (RWE) in Food and Drug Administration submissions. This award recognizes a project that demonstrates value or impact to the organization by solving a business problem or by addressing a specific strategic objective for the company.

NLP used to Extract Real World Evidence from EHRs

As a large health system with a mature and consolidated Epic EHR system, Mercy has a significant data set of patient treatments and outcomes. There is a multitude of information documented in the EHR, such as lists of specific symptoms, diagnoses derived from echocardiogram reports, and certain benchmarking classifications. Since typically 80% of this information is unstructured text, many valuable clinical insights are unavailable in discrete fields, and therefore vital patient information can be trapped when making clinical decisions.

NLP text mining platforms like Linguamatics I2E extract information from unstructured text-based EHRs and transform it into actionable insights that can be placed into a dataset and analyzed.